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Modeling and understanding heat transport and temperature variations within biological tissues and
body organs are key issues in medical thermal therapeutic applications, such as hyperthermia cancer
treatment. The biological media can be treated as a blood saturated tissue represented by a porous
matrix. A comprehensive analytical investigation of bioheat transport through the tissue/organ is carried
out including thermal conduction in tissue and vascular system, blood-tissue convective heat exchange,
metabolic heat generation and imposed heat flux. Utilizing local thermal non-equilibrium model in por-
ous media theory, exact solutions for blood and tissue phase temperature profiles as well as overall heat
Hyperthermia exchange correlations are established for the first time, for two primary tissue/organ models representing
Biological tissue/organ isolated and uniform temperature conditions, while incorporating the pertinent effective parameters,
Blood such as volume fraction of the vascular space, ratio of the blood and the tissue matrix thermal conduc-
tivities, interfacial blood-tissue heat exchange, tissue/organ depth, arterial flow rate and temperature,
body core temperature, imposed hyperthermia heat flux, metabolic heat generation, and blood physical
properties. A simplified solution based on the local thermal equilibrium between the tissue and the blood
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1. Introduction

Thermal transport within living organisms, bioheat transfer, is
an important biological and therapeutic issue, which involves
new aspects in thermal therapies, cryobiology, burn injury, disease
diagnostics, and thermal comfort analysis. Thermal side effects of
various treatments are important issues in bioheat investigations
such as in bone drilling operation [1], frictional heating and tem-
perature rise in total knee joint replacement [2], and in ophthal-
mology (laser eye surgery) [3-5]. A principal issue in medical
thermal therapeutic applications, such as hyperthermia treatment,
is modeling and understanding the heat transport and temperature
variation within biological tissues and body organs.

Hyperthermia treatment is recognized as the fourth adjunct
cancer therapy technique following surgery, chemotherapy, and
radiation techniques. In hyperthermia, the tumor cells will be over-
heated to a therapeutic value, typically 40-45 °C to damage or kill
the cancer cells and affect metastases [6,7]. Although it has been
known for many years that fever can damage the cancer cells,
hyperthermia technique is recently being developed as a cancer
treatment by controlling and focusing the heat on the cancer cells.
Hyperthermia is being utilized for many cancer types such as
breast cancer, sarcomas, melanomas, bone metastases, carcinomas
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of the lung, stomach, pancreas, gallbladder, kidneys, neck, brain tu-
mors, prostate tumors, and cervical cancer [8,9].

In contrast to healthy cells, a tumor is a tightly packed body of
cells in which the blood circulation is restricted. Heat can cut off
the oxygen and vital nutrients from the abnormal cells resulting
in a breakdown in the tumor’s vascular system and destruction
of the cell’s metabolism and subsequent devastation of tumor cells.
In addition, heat causes the formation of certain proteins in the dis-
eased cancer cells, the so-called heat shock proteins, which appear
on the surface of the degenerated cells. The body immune system
detects these proteins as extraneous cells, making the abnormal
cells visible to the immune system.

Hyperthermia technique also improves the efficiency of other
cancer therapies such as, chemotherapy and radiotherapy. Insolat-
ed cells, which would not respond to chemotherapy or radiation
alone, would be subjected to heat treatment. Hyperthermia in con-
junction with chemotherapy causes the drug to penetrate deeper
into the tumor while augmenting the efficacy of the drug delivered
to the tumor. The increased efficacy of simultaneous utilization of
hyperthermia and radiotherapy or chemotherapy has been demon-
strated in treatment of certain types of diseases [10], such as breast
cancer [11], cervical and bladder cancer [12], rectal cancer [13],
prostate cancer [14], head and neck cancer [15], superficial tumors,
lung and stomach cancer and pancreas and liver metastases.

Hyperthermia treatment can be utilized either on the whole
body or locally targeting the cancer cells. Whole body hyperther-
mia treatment is usually used for metastases, which have spread
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Nomenclature

G specific surface area (m™')

Bi Biot number, hy,a,D? /Ky efr

Cp blood specific heat (J kg~' K1)

D depth of the tissue/organ (m)

Dy hydraulic diameter of the channel, 2D (m)

hey blood-tissue interstitial heat transfer coefficient
(Wm2K)

h; surface heat transfer coefficient for the thermal non-
equilibrium model, q/(Ts — Tpm)(W m—2 K1)

kp blood thermal conductivity (W m~! K~1)

Kb.dis blood dispersion thermal conductivity (W m~'K~')

kb efr effective thermal conductivity of the blood phase
(Wm 1K)

ke tissue thermal conductivity (W m~! K=1)

K efr effective thermal conductivity of the tissue phase
(Wm K™

Nug Nusselt number at the organ’s surface incorporating the

local thermal non-equilibrium model

Nugsimp Nusselt number at the organ’s surface based on the local
thermal equilibrium model

q heat flux (W m~2)

qs heat flux at the body organ surface (W m~2)

{gen heat generation within the biological tissue (W m~—3)

T temperature (K)

T, arterial blood temperature entering the organ (K)

To.m blood mean temperature (K)

T. body core temperature (K)

Ts temperature of the body organ surface subject to an im-
posed heat flux (K)

u blood velocity (ms™!)

U, arterial blood velocity entering the organ (ms~!)

X longitudinal coordinate (m)
y transverse coordinate (m)

Greek symbols

€ porosity (volume fraction of the vascular space)

n non-dimensional transverse coordinate, y/D

(] non-dimensional heat generation within the biological
tissue, (1 — &€)Dggen/qs

K ratio of the effective blood thermal conductivity to that
of the tissue, kp eff/Ke e

y) parameter, /Bi(1 + k)/K

o blood density (kg m~3)

0 non-dimensional temperature, Kqe(T — Ts)/qsD

Obm non-dimensional blood mean temperature

0¢ non-dimensional body core temperature, ke e (Tc — Ts)/
qsD

A6 non-dimensional temperature difference between tis-
sue and blood phases

0] blood perfusion rate (s~ 1)

Subscripts/superscripts

b blood phase

b,m blood mean

c body core

eff effective property

S body organ surface subject to an imposed heat flux
t tissue phase

Symbol

() intrinsic volume average of a quantity

throughout the body, and for frequently recurring tumor types.
Localized hyperthermia treatment can be managed so as to have
a relatively limited effect on healthy cells while a higher tempera-
ture is achieved in the cancer cells. In fact, one of the important
issues in hyperthermia is to apply the treatment mainly on the
abnormal cells to prevent burning and destroying the healthy ones.
Hyperthermia is performed utilizing various techniques such as
warm water bath balloons and blankets, hot wax, inductive coils
(similar to those in electric blankets), and thermal chambers. For
deep localized treatments various modalities such as short waves,
ultra-high frequency sound waves, microwave and laser can be
utilized.

Heat transport through the biological tissues, represented by
bioheat models, involves thermal conduction in tissue and vascular
system, blood-tissue convection and perfusion (through capillary
tubes within the tissues) and also metabolic heat generation.
Assuming local thermal equilibrium between the blood and the tis-
sue, Pennes [16] presented one of the early and more frequently
used bioheat models. Due to simplifications and shortcomings of
this model, other workers have established mathematical bioheat
models by extending or modifying Pennes model [17,18]. Wulff
[19] modified the bioheat model’s perfusion term, utilizing local
mean blood velocity and tissue temperature gradient rather than
the blood perfusion volumetric rate and the blood temperature dif-
ference, respectively, as used in Pennes model. Klinger [20] consid-
ered the local blood mass flux to modify the Pennes model. Chen
and Holmes [21] developed the previously stated models consider-
ing the thermal equilibrium effects and adding the dispersion and
microcirculatory perfusion terms. Analytical and computational
studies have been done utilizing stated bioheat transfer models
and the local thermal equilibrium assumption between the blood

and the tissue [22-26]. Some bioheat models are also established
and examined for countercurrent heat transfer in arterial-venous
vessels [27-36].

Advantages of utilizing porous media theory in modeling bio-
heat transfer, due to fewer assumptions as compared to different
established bioheat transfer models, are stressed by Khaled and
Vafai [37], Nakayama and Kuwahara [38], and Khanafer and Vafai
[39,40]. The biological structure can be treated as a blood saturated
porous matrix including cells and interstices, the so-called tissue.
Utilizing the porous media theory, non-thermal equilibrium be-
tween the blood and the tissue is addressed and the blood-tissue
convective heat exchange is taken into account. Volume averaging
over each of the blood and tissue phases results in an energy equa-
tion for each individual phase [41-50], known as the local thermal
non-equilibrium model. The volume averaging over a representa-
tive elementary volume containing both the blood and the tissue
phases results in a local thermal equilibrium model referred to as
the one equation model. Description of the established bioheat
transport models can be found in the literature [17,37,38,51]. A
comprehensive synthesis and analysis of mathematical models
representing bioheat transport has been recently presented by
Khanafer and Vafai [39]. Further, the analytical characterization
and production of an isothermal surface for biological and elec-
tronics applications is given in Mahjoob and Vafai [52].

As mentioned earlier, the knowledge of the heat transfer pro-
cess within the blood perfused tissues and the temperature distri-
bution in tissues and organs are essential for an effective thermal
therapy such as hyperthermia cancer treatment and also reducing
any undesired effect on the healthy cells. In this work, the thermal
therapy and heat flux intensity effects on the biological media are
investigated and characterized analytically to establish a more
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accurate prediction of the blood and tissue temperature distribu-
tions within biological organs, applicable in bioheat applications
such as hyperthermia. Utilizing the local thermal non-equilibrium
model of porous media theory, exact solutions for the tissue and
blood temperature distributions are established. These exact solu-
tions can be utilized for different types of tissues and organs while
determining the physical condition of the patient by considering
effective parameters such as the vascular volume fraction, tissue
matrix permeability and size, blood pressure and velocity, meta-
bolic heat generation, imposed heat flux, and body core tempera-
ture. As such, the current models for temperature prediction
during thermal therapies can be modified to present a more accu-
rate temperature distribution within healthy and diseased cells.

2. Modeling and formulation
2.1. Problem description

Biological media usually consist of blood vessels, cells, and
interstitial space, which can be, categorized as vascular and ex-
tra-vascular regions (Fig. 1a). As such, a biological structure can
be modeled as a porous matrix, including cells and interstitial
space, called tissue in which the blood infiltrates through. In this
work, the blood and tissue local heat exchange, while the biological
media is subjected to an imposed heat flux as in hyperthermia, is
addressed and the blood and tissue temperature profiles are estab-
lished analytically. The established analytical correlations incorpo-
rate the effects of the imposed heat flux, blood and tissue physical
properties, arterial blood velocity, porosity and geometrical prop-
erties of the biological structure, internal heat generation within
the tissue (e.g. metabolic heat generation), and the heat penetra-
tion depth. Two primary conditions are investigated in this work
to simulate bioheat transport through a biological structure. In
the first model, an isolated boundary condition exists at a depth
(D) across which the heat can penetrate. This model is also appli-
cable as a symmetry thermal boundary condition in which the heat
flux is imposed from both sides of the organ (Fig. 1b). The second
model is based on the physical representation of the core tissue/or-
gan at a safe value at depth (D) through imposition of a uniform
temperature at that depth. Flow is assumed to be hydraulically
and thermally fully developed. Natural convection and radiation
are assumed to be negligible and thermodynamic properties of
the tissue and blood are considered to be temperature
independent.

2.2. Governing equations

The anatomic structure is modeled as a porous medium consist-
ing of the blood and the tissue (solid matrix) phases. The governing
energy equations for the blood and tissue phases incorporating
internal heat sources (e.g. metabolic reactions) and local thermal
non-equilibrium conditions can be represented as [37-39,41-49].

Blood phase:

Koo V2T + hool (T — (1)) = spey(u 212 1)
Tissue phase:

keer V3 (T = heptl(T0)" = (T5)") + (1 = €)den = 0 )

where,

kp et = ekb + kb dis 3)

Keerr = (1 — €)ke (4)

where, parameters (Ty,)®, (T,)%, (W)®, K efr, Keefr, Kb, Kt Kb.ais & p, and ¢,
are the intrinsic phase average blood and tissue temperatures,

intrinsic blood phase average velocity, blood and tissue effective
thermal conductivities, blood and tissue thermal conductivities,
blood dispersion thermal conductivity, porosity (the volume frac-
tion of the vascular space), blood density and specific heat, respec-
tively. The blood-tissue interfacial heat transfer coefficient is
represented by hy, and the specific surface area by a,, and gy is
the heat generation within the biological tissue (e.g. metabolic heat
generation). Nakayama and Kuwahara [38] state that replacing the
perfusion term of the simpler bioheat models by the interfacial con-
vective heat transfer term in the porous media model should be
examined and they proposed replacing the term hy,ay by
hwaw + pcpew in both the blood and tissue energy Egs. (1) and (2).
Parameter o represents the blood perfusion rate, which can be con-
sidered independent of location and temperature for simplicity. As
such, the established exact solutions in this work are general solu-
tions, which can satisfy both cases of utilizing the perfusion term as
stated in Nakayama and Kuwahara model [38] or without that
modification.

2.3. Boundary conditions

The imposed heat flux at the organ’s surface can be represented
under the local thermal non-equilibrium conditions, based on the
work of Amiri et al. [48], Lee and Vafai [45] and Marafie and Vafai
[49] as

(Tp)"
ay

AT,
— Kyeir <at>
—0 y y=0

(5)

0
as = 7kb.eff

The temperature at the interface of the body organ surface
is likely to be uniform regardless of whether it contacts the
tissue solid matrix or the blood. As such the temperature of
the tissue and the blood at the organ surface will be the same
[45,48,49]:

(To)?], ~ (T, o~ Ts (6)

y=0 "

The external heat flux influences the tissue within a depth of D.
As discussed earlier, two models are investigated for the boundary
condition at the depth of D from the surface subject to a given heat
flux. These are (I) isolated core region and (II) uniform core tem-
perature (T) at depth (D) as shown in Fig. 1. The value of the uni-
form temperature (T.) can be assigned as the body core
temperature or a safe temperature not to damage the healthy tis-
sues. These models are represented as

Model I: isolated core region condition

3(Tp)"

y

oTy)'

5 =0 (7)

y=D

y=D

Model II: uniform core temperature condition

(To)?], = (T, ~ Te ®)

2.4. Normalization

The governing equations are normalized utilizing the following
non-dimensional variables:

n= y = kb;eff Bi— htbath2 0— keerr ((T) — Ts)
D’ Keefr Keett q.D ' (9)
o (1= 8)Ddgen

4s

Utilizing Eqgs. (5) and (7)-(9), the governing Eqs. (1) and (2) can be
casted as
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Fig. 1. Schematic diagram of (a) the tissue-vascular system, (b) Model I: peripheral heat flux or isolated core region condition, and (c) Model II: uniform core temperature
condition.

(%0, 10) in which,
A=-Bi  for model I: isolated core region condition (12)
. A=-Bi(1+(1+x)6.)  for model II : uniform core
KW — (1 +k)Bi o) = A (1mn temperature condition (13)
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where,

_ kt.eff(Tc - Ts)
q.D

Furthermore, utilizing equation (9), the boundary conditions
(6)-(8) can be normalized for each model. Additional boundary
conditions to solve the obtained 4th order blood/tissue energy
Egs. (10) and (11) can be obtained by evaluating the second or
third order derivatives of 0, and 0, at the boundaries. This results
in the following set of boundary conditions for each model:
Model I: isolated core region condition

0c (14)

Oy = btlyo =10 (15)

00y o6,

=2 == 0 (16)

a’? n=1 61’/ n=1

30, 1+ @ 17)

=2 =

on o K

%6,

—_= =-0 (18)
2

on yoo

%0, %0,

—=2 =—| =0 (19)
3 3

on yt on yt

Model II: uniform core temperature condition

Obly—0 = Ocl,o =0 (20)

Ob‘,,:1 = 0t|;1:1 =0 (21)
2 2

% :aa_ozb _1+q +KK)0c+<I> (22)
i 70 n -

0%0; %0,

= === ;) (23)

2 2
on 1o on et

2.5. Blood, tissue, and surface temperature fields

Blood and tissue phase temperature distributions, can be
obtained by solving the governing equations and utilizing the Neu-
mann and Dirichlet boundary conditions given by Egs. (10)-(23).
After considerable analysis, it results in the blood and tissue tem-
perature profiles (for the sake of simplicity, the volume averaging
sign (( )) is dropped):

Model I: isolated core region condition

_ 1 n 1+(1+K)® el 4 i)
0b_]+K<n<§71>7 (1 + K)Bi {17 1+e2 }) (24)

_ 1 n_ K1+ (1+K)@) [, ey
9ﬁ1+x<’7(2 l)+ A+ B T

(25)

where,

)= \/Bi(1 + K)/K (26)

As such, the temperature difference between the tissue and the
blood phases and the blood mean temperature can be written as

_ 1+(1+K)® el 4 e#2-1m
A0= 0= == 0B < o 1te¥ @7)

-1 /1 1+(1+kK)® 1e¥ -1
0"'”‘_1+K(§+ (1+1)Bi {]7§e2*+1 (28)

The dimensional blood mean temperature and the body organ
surface temperature which is subjected to an imposed heat flux,
are derived to be

T, _ qs + (1 — E)DQgen
bm="—"_ "N

o X+ (29)

_4t (1- S)DQgenx n q;D
PCpUaD kt.eff(‘l + K)

1 g+ -0 +KDggen [, 1% -1
8 (3 T T+ Big, ' =eryay) T G0

Finally, using Eqgs. (9), (24), (25) and (30), the blood and tissue
temperature profiles can be casted as
_ asy ( Yy >
" kee(1+ k) \2D
N gD+ (1-¢)(1+ K)qugen {ez"«(ie*’"‘J’/D — 1)+ eMP 4 l}
Keetr (1 + K)*Bi 2e* +1)
g+ (1 - S)DQgenx i gD

T;

+T,

pcpuaD 3kie (1 + K)
(31
To— 9 (L 3 ) q,D + (1 = &)(1 + K)Dqgen
Keerr(1 + K) \2D Keesr (1 + 1¢)*Bi
e (icre VP 4 1) + KkieM/P — 1
><{(1+K)f ) }
qs + (1 — £)Dggen q;D
T 32
oeuD " Bker(1 1K) (32)
Model II: uniform core temperature condition
b= —— (111 + (1 + 190 14+5)0c—1
b= 175 (3 10+ (1 K0 + (1 + ) = 1]
(A +K) 0+ @) +1 [ e et (33)
(1+ K)Bi 1+e
b= —— (M1 + (1 + 900 + (1 + K)0e — 1
t—lHC(Z[ +(14+K)0)n+ (1 + K)o — 1]
K(1+K)(0c+ @) +1] [, eMen
(1+ K)Bi ! 1+e (34
where,
4 =4/Bi(1 +K)/K
and
(KO + P+ e e
A0= 0= = B T+e (33)
o — -1 1—5(1+K)Hc+] +(14+K)(0.+ D) 17ge’"-—1
R 12 (1+K)Bi Jei+1

(36)

The blood mean temperature and the organ surface tempera-
ture, which is subjected to an imposed heat flux, are derived to be

q,D (1 N (1 — €)Dqgen

Tom = (Ta —Te- keer(1+ 1) \2 qs

7 K 2(e* - 1)
* {ﬁ*Bi(l o U T 1))}>>
—12Bik e (1 + k)X

X €Xp 2 . 2(e’-1)
peouaD? (7Bi(1 + k) +12(1-35-7))
. 2e'-1)
a.0 (1 , (1= &)Dde { 7 K /;wD o1

Tkt \27 e (127 BT+
(37)
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) (Ta R (5+ e (-t (1-559) })>
Ta= 2(e-1)
Bt (1 ~%e)
“12Bikeerr(1 + K)°x
pCpU, D (731’(1 +K)+ 12(1 _ T&))

gD+ (1 - 8)DZQgen
I<t7eff(‘1 + K)

l
12

X eXp

+T.

(38)
Using Egs. (9), (33), (34) and (38), the blood and tissue temper-
ature profiles can be casted as

_ ds _ (1 _6)D2qgen Yy
Tb B kt.eff(] + K) (D ) kteff 1+ K) < 2D (D+ 1)
L PR (1 1
TBi(1+K) Tre U a2p + )
n 1 e/y/D+e 'l——
Bi(1+k) 14¢e

(ol )
ﬁ+m (1 *3&3)
—12Bikeerr (14 K)°X

B Y (731(1;;)“2(1_?1;)) e >

(1 *8)D2‘-Jgen( y (y+1>

as
To—— % (p_ )
Fa1 70 PV kT 2D D

K2 e/ 4 e (1h) y 1y
+Bi(]+lc){1_ Tre +(1-55(p+1)

k 1 eW/D 4 eX(1-p)
CBi(l+x)] 1+e

1, (1-)Ddgen | 7 ¢ 2(e*-1)
N (T —Te— ,f(1+rc) (2+ o {ﬁiBi(l’;K)X <1fz<ef+1>> }))

1 2(e*-1)
ﬁ + Bi(1+k) (1 - /‘.(e’+1)>

. 2,
X eXp . —12Bik; eff(] +K) — LT (40)
PCoU,D (731(1+x)+12(1 >))

e +1)

It should be noted that utilizing the established organ surface
temperature correlation (Eqs. (30) and (38)), a relationship between
the heat flux value, depth of heat penetration and surface tempera-
ture are established in which having two of these quantities, the
third one can be evaluated.

2.6. Heat transfer correlations

The body organ surface heat transfer coefficient for the local
thermal non-equilibrium model is obtained from

_ Y
hs - Ts - Tb.m (41)

As such, the heat exchange rate represented by a Nusselt number
at the body organ surface subject to an imposed heat flux (qs) can be
displayed as
hD, -2
kb,eff B KOb.m

Nus = (42)
Utilizing Eqs. (28) and (36), the Nusselt number can be represented as
Model I: isolated core region condition

6(1+kK)/K

3q5+3(1+K)(1-€)Ddgen
1+ (1+xK)Biq, 1

Nus =

(43)

1 e2/_1
7 e241

Model II: uniform core temperature condition

Nu. = 241+ x)/K

12k g (1+1¢) (Ta—Tc) (1-¢) Dqgen 12K 2(e*-1)
( q,D - (641 7_B (1+K) 1- e/+1)
i ¢ —12Biky o (1+K)%x
% 12Bi(1+k) —1]exp teff (14K)
. 2(et-1) 2 ; 2(e4-1)
7Bi(1+1)+12 (1—m) pepliaD (751(1+K)+12 (1—2WHJ>>

+6+ (1— aDqge,. {54» 112r< (1 2 1))]

+K)Bi (ef+1)

(44)

2.7. Simplified solution

A simplified solution can be obtained assuming thermal equilib-
rium between the blood and tissue phases, i.e., 0 = 0, = 0;. Adding
the energy equations and utilizing boundary conditions (5)-(8),
the blood and tissue temperature distributions and the Nusselt
number are obtained as

Model I: isolated core region condition

__nom_
T4k 3-1) (45)
_ qs + (1 - 8)D(.Igen
Tb,m = 7PCPU3D x+T,
s+ (1 = &)Dqgen q,D
Ts = pCousD X+ ket (1 + K) +Ta (46)
T Y1) 4 9t (1= &)DGgen
L=Te=r 0 +m <2D ) oD
q;D
g———+T 47
k(1) “47)
1+k
Nitg imp = 6 (48)
Model II: uniform core temperature condition
__n _
072(1+K) [(T+ 1 4+K)0)n+ (14 K)0. —1] (49)
q,D 1 7(1- S)Dqgen)>
Tom = (Ta—Tc— -
bm < Keer(1 1 1) (2 T 12,
« exp =12k s (1 -&-2K)x N q,D
7pcpu,D 2keerr(1 + k)
7(1 — €)Dqgen
X (1 +T +T. (50)
(12 gy 4D (6 (1-&)Dige
2 .
X exp —12k¢ e (1 +2K)x N 4D + (1 — €)D" qgen YT (51
7pcpuaD Kees (1 + K)

12 0 qD 6 (1-8)Ddgen
To=Te= { 7 (Ta—Te) ke eir(1+K) (7+ q,
Yy —12keerr (1 +K)X
*(1-35(p+1))exp ( 7pcouiaD?

178>qugen< ,L(hl))ﬂc

qs (
D=9+ Gidr U260
(52)

kr eft (1+1)
Nus,simp

24(1+K)/K

60K efr (1+K) 5(1-¢)Dggen _ 30 =12k e (14K)X 5(1-¢)Ddgen
( sy (Ta = Te) —20-gRlm —30) exp (2Rl 20 4 S0 CPMn 1.6
(53)
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3. Results and discussions

The ability to readily and interactively predict tissue and blood
temperature distributions within a body organ is crucial for an
effective thermal therapy such as hyperthermia cancer treatment.
The tissue and blood temperature profiles obtained from the pres-
ent analytical correlations effectively address this need. The tissue
and blood properties are utilized to assess the blood and tissue
temperature distributions obtained from the present analytical re-
sults. Based on the cited values in the literature [39], a representa-
tive volume fraction (0.1 or less) of the vascular system is utilized
for some of the comparisons. However, the established analytical
expressions allow for incorporating variations in representative
volume fraction as well as various physical attributes. In Figs. 2
and 3, the temperature profiles are compared with the available
data in the literature. In the works of Lee and Vafai [45] and
Marafie and Vafai [49], exact solutions for forced convective flow
through a channel filled with a porous medium and subject to an
imposed heat flux are established which is equivalent to model I
of the present study (isolated core region condition) when the met-
abolic heat generation is zero.

In Fig. 2, the solid and liquid temperature profiles are compared
with the results obtained from the analytical correlations estab-
lished by Lee and Vafai [45] for the porosity of 0.1. The solid and
liquid phase temperature distributions are in excellent agreement
with the ones by Lee and Vafai [45] for a wide range of liquid-solid
interstitial heat exchange parameters. Fig. 2 also indicates that a
decrease in the internal heat exchange results in a larger blood
and tissue temperature difference while displaying the importance
of utilizing the local thermal non-equilibrium model. In Fig. 3, the
solid and liquid temperature profiles obtained from the present
analytical study are compared with the analytical results of Lee
and Vafai [45] and analytical and numerical results of Marafie
and Vafai [49] for the porosity of 0.01. A very good agreement is
observed for all of the cited comparisons. The very small deviation
between the numerical and analytical results is due to utilization
of a smaller Darcy number in the numerical simulations [49].
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In Fig. 4, the analytical temperature distribution is compared
with the numerical results for both isolated and uniform core
temperature condition models. For the numerical simulations, an
implicit, pressure-based, cell-centered finite volume method is uti-
lized to solve the coupled governing equations. The governing
equations, including Darcy-Brinkman momentum equation and
the energy equation with local thermal equilibrium assumption,
are discretized and linearized utilizing second order upwind meth-
od for the convection term and central differencing for the diffu-
sion terms. Resulting algebraic equations are solved sequentially
using Gauss-Seidel point implicit linear equation solver in
conjunction with an algebraic multi-grid (AMG) method in order
to reduce the dispersion errors while increasing the computational
speed. SIMPLE algorithm is utilized for the pressure-velocity cou-
pling [53,54]. An iterative procedure utilizing under-relaxation is
used and convergence is assumed when residuals become less than
10, Comparing analytical and numerical results for both models
indicates a very good qualitative and quantitative agreement as
seen in Fig. 4.

Fig. 5 displays the effect of vascular volume fraction on the
blood and tissue temperature profiles. As can be seen, in both iso-
lated and uniform surface temperature models, a decrease in the
vascular volume fraction increases the difference between the
blood/tissue temperature and that of the body organ surface. As
such, more temperature uniformity can be achieved within a bio-
logical structure with a larger vascular volume fraction resulting
in a more effective hyperthermia treatment. A change in the vascu-
lar volume fraction also translates in a change in the blood and
tissue effective thermal conductivities. The results in Fig. 5 display
the cooling effect of the blood on the tissue-vascular system. As a
natural cooling system in the body, the blood regulates the body
temperature during hyperthermia treatment by arterial blood with
the cold body core temperature, while modifying the vascular vol-
ume fraction of the biological structure. The natural body thermal
regulation system increases or decreases the vascular volume frac-
tion of the biological structure when exposed to a higher or lower
temperature, respectively.
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Fig. 2. Liquid and solid temperature profiles obtained from the present analytical solution and the analytical solution by Lee and Vafai [45] for Model I (isolated core region

condition) for different interstitial heat exchange values and ¢=0.1, ®=0, and xk =0.111.
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Fig. 4. Comparison of the temperature profile obtained from the present analytical and numerical solutions utilizing blood-tissue local thermal equilibrium assumption at

¢=0.1, ®=0.018, and k =0.111.

Fig. 6 displays the effect of metabolic heat generation on the
blood and tissue temperature profiles. As expected, larger heat
generation ratio also results in higher temperatures in the organ as
well as the blood within it. Fig. 6 confirms that, in both isolated
and uniform core temperature models, an increase in the metabolic
heat generation results in a larger deviation between the tissue tem-
perature and that of the blood. This shows that then error in utilizing
alocal thermal equilibrium model for bioheat transfer investigations
increases as the metabolic heat generation (@) increases.

4. Conclusions

Understanding heat transfer processes and temperature distri-
butions within biological media are key issues in thermal therapy
techniques such as hyperthermia cancer treatment. The biological
media can be treated as a blood saturated tissue represented by a
porous matrix. In this work, utilizing local thermal non-equilib-
rium model in porous media theory, exact solutions are estab-
lished, for the first time, for the tissue and blood temperature
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Fig. 5. The effect of vascular volume fraction on the blood and tissue temperature profiles at Bi = 10 and ®/(1 — ¢) = 0.022. (a) Model I: isolated core region condition and (b)

Model II: uniform core temperature condition.

distributions for two tissue/organ models representing isolated
and uniform core conditions. Analytical temperature distributions
for the organ surface, subject to an imposed heat flux, and the
blood mean temperature as well as overall heat exchange correla-
tions are also presented incorporating the effective parameters
such as the volume fraction of the vascular system, the blood
and tissue thermal conductivities, interfacial blood-tissue heat
exchange, tissue/organ depth, arterial velocity and temperature,
body core temperature, imposed hyperthermia heat flux, metabolic
heat generation, and the blood’s physical properties. The exact
solutions established in this work allow for a readily accessible
and interactive prediction of tissue and blood temperature distri-

bution within a body organ. This addresses a crucial need in hyper-
thermia treatment. A very good agreement exists between the
results, obtained from the present analytical study, and the avail-
able data in the literature and our numerical simulations. The
results indicate the importance of utilizing the local thermal
non-equilibrium model especially at higher metabolic heat gener-
ation ratios (@) and within biological media with lower vascular
volume fraction. A decrease in the metabolic heat generation or
an increase in the organ/tissue’s vascular volume fraction enhances
temperature uniformity within the media resulting in a more effec-
tive hyperthermia treatment. Simplified solutions were also estab-
lished based on the local thermal equilibrium between the tissue
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Fig. 6. The effect of metabolic heat generation on the blood and tissue temperature profiles at Bi = 10, ¢ = 0.1, and « = 0.111. (a) Model I: isolated core region condition and

(b) Model II: uniform core temperature condition.

and blood for both tissue/organ models representing isolated and
uniform core conditions.
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